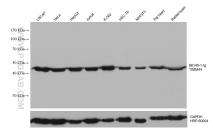
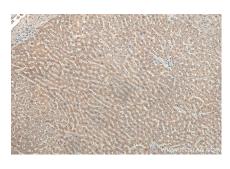
For Research Use Only

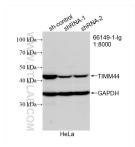
TIMM44 Monoclonal antibody

Catalog Number:66149-1-lg Featured Product

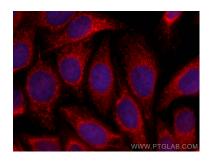



Basic Information	Catalog Number: 66149-1-lg	GenBank Accession Number: BC033628 GeneID (NCBI): 10469 UNIPROT ID: 043615 Full Name: translocase of inner mitochondrial membrane 44 homolog (yeast) Calculated MW: 452 aa, 51 kDa		Purification Method: Protein A purification CloneNo.: 4G7D4 Recommended Dilutions: WB 1:5000-1:50000 IHC 1:250-1:1000 IF/ICC 1:200-1:800			
	Source: Mouse						
					Observed MW: 45 kDa		
					Applications		
		Species Specificity: human, mouse, rat, pig, rabbit		WB : LNCaP cells, HeLa cells, HepG2 cells, Jurkat cells, K-562 cells, HSC-T6 cells, NIH/3T3 cells, pig heart tissue, rabbit heart tissue			
Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0		IHC : human liver tissue, IF/ICC : HepG2 cells,					
Background Information	Translocase of inner mitochondrial membrane 44 (TIMM44), also known as MIMT44 and TIM44, belongs to the Tim44 family. TIMM44 is a mitochondrial protein located at the inner mitochondrial membrane, which is crucial for the integrity and function of mitochondria. In an ATP-dependent manner, TIMM44 anchors mitochondrial heat shock protein 70 to the translocase of the mitochondrial inner membrane 23 (TIMM23) complex. TIMM44 is essential for mitochondrial pre-protein import into the mitochondrial matrix. TIMM44 is vital for the integrity and function of mitochondrial function and mitochondrial matrix. TIMM44 is vital for the integrity and function of mitochondrial pre-protein import into the mitochondrial functions in endothelial cells, causing mitochondrial protein input arrest, ATP reduction, ROS production, and mitochondrial depolarization, and leading to apoptosis activation (PMID: 36438483, PMID: 37147302, PMID: 38467612). The observed molecular weight of TIMM44 is 45 kDa, indicating a mature form of TIMM44 (PMID: 33891006).						
	mitochondrial pre-protein import into mitochondria. TIMM44 silencing disru protein input arrest, ATP reduction, RC activation (PMID: 36438483, PMID: 37	the mitochondrial mate pted mitochondrial fund DS production, and mitoo 147302, PMID: 3846761	ix. TIMM44 is ctions in endo chondrial dep	vital for the integrity and function of thelial cells, causing mitochondrial plarization, and leading to apoptosis			
Storage	mitochondrial pre-protein import into mitochondria. TIMM44 silencing disru protein input arrest, ATP reduction, RC activation (PMID: 36438483, PMID: 37	the mitochondrial mat pted mitochondrial fun IS production, and mito 147302, PMID: 3846761 444 (PMID: 33891006). er shipment.	ix. TIMM44 is ctions in endo chondrial dep	vital for the integrity and function of the integrity and function of the integrity and function of the integrity of the inte			

For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com


This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data



Immunohistochemical analysis of paraffinembedded human liver tissue slide using 66149-1-Ig (TIMM44 antibody) at dilution of 1:500 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

WB result of TIMM44 antibody (66149-1-Ig: 1:8000; incubated at room temperature for 1.5 hours) with sh-Control and sh-TIMM44 transfected HeLa cells.

Various lysates were subjected to SDS PAGE followed by western blot with 66149-1-Ig (TIMM44 antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and reblotted with HRP-conjugated GAPDH Monoclonal antibody (HRP-60004) as loading control.

Immunofluorescent analysis of (4% PFA) fixed HepG2 cells using TIMM44 antibody (66149-1-lg, Clone: 4G7D4) at dilution of 1:400 and CoraLite®594-Conjugated Goat Anti-Mouse IgG(H+L).