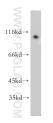
For Research Use Only

NFKB2 Polyclonal antibody Catalog Number: 51085-1-AP



Basic Information	Catalog Number: 51085-1-AP	GenBank Accession Number: BC002844	Purification Method: Antigen affinity purification				
	Size: 150ul, Concentration: 200 ug/ml by Nanodrop and 153 ug/ml by Bradford method using BSA as the standard; Source: Rabbit Isotype: IgG	GenelD (NCBI):	Recommended Dilutions:				
				Observed MW: 103 kDa			
				Applications	Tested Applications: WB, ELISA	Positive Controls:	
					Species Specificity: human, mouse	WB : Apoptosised HeLa cells,	
				Background Information	NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NI kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. P52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. P52 and p100 are respectively the minor and major form; the processing of p10 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. This antibody is a rabbit polyclonal antibody raised against a peptide mapping within human NFKB2.		
		Storage	Storage: Store at -20°C. Storage Buffer: PBS with 0.02% sodium azide and 50	0, 1			
*** 20ul sizes contain 0.1% BSA	Aliquoting is unnecessary for -20°C s	torage					

For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Apoptosised HeLa cells were subjected to SDS PAGE followed by western blot with 51085-1-AP (NFKB2 antibody) at dilution of 1:300 incubated at room temperature for 1.5 hours.