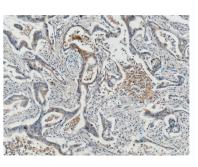
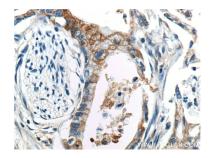
For Research Use Only

ADAM17-Specific Polyclonal antibody

Catalog Number:20259-1-AP

2 Publications


Basic Information	Catalog Number: 20259-1-AP	GenBank Accession Number: NM_003183	Purification Method: Antigen affinity purification
	Size:	GenelD (NCBI):	Recommended Dilutions:
	150ul , Concentration: 350 µg/ml by	6868	WB 1:500-1:1000
	Nanodrop and 227 µg/ml by Bradford method using BSA as the standard;	UNIPROT ID: P78536	IHC 1:20-1:200
	Source: Full Name: Rabbit ADAM metallopeptidase domain 17		17
	lsotype: lgG	Calculated MW: 93 kDa	
		Observed MW: 29 kDa	
Applications	Tested Applications:	Positive Controls: WB : human placenta tissue,	
	WB, IHC, ELISA		
	Cited Applications: WB, IF, IHC	IHC : human pancreas cancer tissue,	
	Species Specificity: human		
	Cited Species: human		
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0		
Background Information	buffer pH 6.0 The ADAMs (A Disintegrin And Metall implicated in membrane shedding is (TNF)-a from its precursor (PMID:1823 glycosylation sites, a signal peptide, of ADAM-17 is expressed more freque	oprotease) are multidomain trans ADAM-17, which is shown to relea 8782). ADAM17 is also named as (propeptide and 2 isoforms produce ently and at higher levels in prima access mass at 29 kDa predicted for	se the active form of tumor necrosis facto CSVP, TACE. The full length protein has 9 od by alternative splicing.The 120-kDa for
	buffer pH 6.0 The ADAMs (A Disintegrin And Metall implicated in membrane shedding is (TNF)-a from its precursor (PMID:1823 glycosylation sites, a signal peptide, of ADAM-17 is expressed more freque breast tissue(PMID:17438092). The ex 17169570). This antibody is specific t	oprotease) are multidomain trans ADAM-17, which is shown to relea 8782). ADAM17 is also named as (propeptide and 2 isoforms produce ently and at higher levels in prima access mass at 29 kDa predicted for	se the active form of tumor necrosis facto CSVP, TACE. The full length protein has 9 ed by alternative splicing. The 120-kDa for ry breast carcinomas compared with norm unglycosylated catalytic domain(PMID:
	buffer pH 6.0 The ADAMs (A Disintegrin And Metalli implicated in membrane shedding is (TNF)-a from its precursor (PMID:1823 glycosylation sites, a signal peptide, of ADAM-17 is expressed more freque breast tissue(PMID:17438092). The ex 17169570). This antibody is specific to Author Put	oprotease) are multidomain trans ADAM-17, which is shown to relea 8782). ADAM17 is also named as (propeptide and 2 isoforms produce ently and at higher levels in prima (cess mass at 29 kDa predicted for o ADAM17.	ed by alternative splicing.The 120-kDa for ry breast carcinomas compared with norm
	buffer pH 6.0 The ADAMs (A Disintegrin And Metalli implicated in membrane shedding is (TNF)-a from its precursor (PMID:1823 glycosylation sites, a signal peptide, of ADAM-17 is expressed more freque breast tissue(PMID:17438092). The expressed mo	oprotease) are multidomain trans ADAM-17, which is shown to relea 8782). ADAM17 is also named as (propeptide and 2 isoforms produce ently and at higher levels in prima access mass at 29 kDa predicted for o ADAM17.	se the active form of tumor necrosis factor SVP, TACE. The full length protein has 9 ed by alternative splicing. The 120-kDa for ry breast carcinomas compared with norm unglycosylated catalytic domain(PMID: Application
Background Information Notable Publications	buffer pH 6.0 The ADAMs (A Disintegrin And Metalli implicated in membrane shedding is (TNF)-a from its precursor (PMID:1823 glycosylation sites, a signal peptide, of ADAM-17 is expressed more freque breast tissue(PMID:17438092). The expressed mo	oprotease) are multidomain trans ADAM-17, which is shown to relea 8782). ADAM17 is also named as (propeptide and 2 isoforms produce ently and at higher levels in prima access mass at 29 kDa predicted for o ADAM17. omed ID Journal 291184 Cells 569104 Int J Mol Med er shipment.	se the active form of tumor necrosis factor CSVP, TACE. The full length protein has 9 ed by alternative splicing. The 120-kDa for ry breast carcinomas compared with norm unglycosylated catalytic domain(PMID: Application IF


For technical support and original validation data for this product please contact:T: 1 (888) 4PTGLAB (1-888-478-4522) (toll freeE: proteintech@ptglab.comin USA), or 1(312) 455-8498 (outside USA)W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

human placenta tissue were subjected to SDS PAGE followed by western blot with 20259-1-AP (ADAM17-Specific antibody) at dilution of 1:500 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded human pancreas cancer tissue slide using 20259-1-AP (ADAM17-Specific Antibody) at dilution of 1:200 (under 10x lens).

Immunohistochemical analysis of paraffinembedded human pancreas cancer tissue slide using 20259-1-AP (ADAM17-Specific Antibody) at dilution of 1:200 (under 40x lens).